The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy.
Norwood, F. L., A. J. Sutherland-Smith, N. H. Keep, and J. Kendrick-Jones. "The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy." Structure 8.481 (2000). Web. 17 Mar. 2011.
Dystrophin and related proteins.
During the past year significant progress has been made in understanding how dystrophin deficiency leads to muscle cell necrosis in Duchenne muscular dystrophy and Becker muscular dystrophy. Dystrophin interacts with a glycoprotein complex spanning the muscle sarcolemma, effectively linking the actin cytoskeleton to the extracellular matrix. The carboxyl terminus of dystrophin is required for glycoprotein binding. Interestingly, at least three mRNAs transcribed from the distal end of the DMD gene in tissues other than muscle have been shown to encode this domain. Deficiency of a second component of the dystrophin-associated glycoprotein complex has been shown to occur in another muscle-wasting disorder, severe childhood autosomal recessive muscular dystrophy. Sequence analysis of the entire cDNA for the autosomal dystrophin-related protein utrophin has shown that dystrophin and utrophin are closely related. Furthermore, both of these proteins have been shown to bind to the same or a similar glycoprotein complex in muscle.
Tinsley, J. M., D. J. Blake, M Pearce, A. E. Knight, and J. Kendrick-Jones. "Dystrophin and related proteins." Current Opinion in Genetic Developement 3.3 June (1993): 484-90. Web. 17 Mar. 2011.
Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies.
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extracellular matrix component, laminin. In patients with DMD, the absence of dystrophin leads to the loss in all of the dystrophin-associated proteins, causing the disruption of the linkage between the subsarcolemmal cytoskeleton and the extracellular matrix. This may render the sarcolemma vulnerable to physical stress. These recent developments in the research concerning the function of the dystrophin-glycoprotein complex pave a way for the better understanding of the pathogenesis of muscular dystrophies.
Matsumura, K, and KP Campbell. "Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies." Muscle Verve 17.1 Jan. (1994): 2-15. Web. 17 Mar. 2011.
Good work, Tyler.
ReplyDelete